Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
全向视频中的光流估计面临两个重要问题:缺乏基准数据集以及调整基于视频的方法以适应全向性质的挑战。本文提出了第一个具有360度视野Flow360的感知上天然合成的全向基准数据集,其中有40个不同的视频和4,000个视频帧。我们在数据集和现有的光流数据集之间进行了全面的特征分析和比较,这些数据集表现出感知现实主义,独特性和多样性。为了适应全向性质,我们提出了一个新颖的暹罗表示学习框架(SLOF)。我们以对比度的方式训练我们的网络,并结合了对比度损失和光流损失的混合损失函数。广泛的实验验证了所提出的框架的有效性,并在最新方法中显示出40%的性能提高。我们的Flow360数据集和代码可在https://siamlof.github.io/上找到。
translated by 谷歌翻译
依靠这样的前提是,二进制神经网络的性能可以在很大程度上恢复,而完全精确的权重向量与其相应的二进制向量之间的量化错误,网络二线化的现有作品经常采用模型鲁棒性的想法以达到上述目标。但是,鲁棒性仍然是一个不明智的概念,而没有扎实的理论支持。在这项工作中,我们介绍了Lipschitz的连续性,即定义明确的功能特性,是定义BNN模型鲁棒性的严格标准。然后,我们建议将Lipschitz连续性保留为正规化项,以提高模型的鲁棒性。特别是,虽然流行的Lipschitz涉及正则化方法由于其极端稀疏而经常在BNN中崩溃,但我们将保留矩阵设计以近似于目标重量矩阵的光谱规范,可以将其作为BNN的Lipschitz常数的近似值部署精确的L​​ipschitz恒定计算(NP-HARD)。我们的实验证明,我们的BNN特异性正则化方法可以有效地增强BNN的鲁棒性(在Imagenet-C上作证),从而在CIFAR和Imagenet上实现最新性能。
translated by 谷歌翻译
神经网络二进制通过将其权重和激活量化为1位来加速深层模型。但是,二进制神经网络(BNN)与其完整精确(FP)对应物之间仍然存在巨大的性能差距。由于早期作品中权重二进制引起的量化误差已减少,因此激活二进化成为进一步提高准确性的主要障碍。 BNN表征了独特而有趣的结构,其中二进制和潜在的fp激活存在于同一正向通行证中(\ textit {i.e。} $ \ text {binarize}(\ mathbf {a} _f {a} _f)= \ mathbf {a a} _b $) 。为了减轻从FP到二元激活的二进化操作引起的信息降解,我们在通过互信息(MI)最大化的镜头训练BNN时建立了一种新颖的对比学习框架。将MI作为指标引入,以衡量二进制和FP激活之间共享的信息,这有助于对比度学习。具体而言,通过从相同输入样品中拉出二进制和FP激活的正对,以及从不同样品中推动负面对(负面对数的数量可以大大),从而极大地增强了BNN的表示能力。这使下游任务不仅有益于分类,而且还受益于分类和深度估计,〜\ textit {etc}。实验结果表明,我们的方法可以作为现有最新二元方法的堆积模块实现NYUD-V2的能力。
translated by 谷歌翻译
Steiner树问题(STP)在图中旨在在连接给定的顶点集的图表中找到一个最小权重的树。它是一种经典的NP - 硬组合优化问题,具有许多现实世界应用(例如,VLSI芯片设计,运输网络规划和无线传感器网络)。为STP开发了许多精确和近似算法,但它们分别遭受高计算复杂性和弱案例解决方案保证。还开发了启发式算法。但是,它们中的每一个都需要应用域知识来设计,并且仅适用于特定方案。最近报道的观察结果,同一NP-COLLECLIAL问题的情况可能保持相同或相似的组合结构,但主要在其数据中不同,我们调查将机器学习技术应用于STP的可行性和益处。为此,我们基于新型图形神经网络和深增强学习设计了一种新型模型瓦坎。 Vulcan的核心是一种新颖的紧凑型图形嵌入,将高瞻度图形结构数据(即路径改变信息)转换为低维矢量表示。鉴于STP实例,Vulcan使用此嵌入来对其路径相关的信息进行编码,并基于双层Q网络(DDQN)将编码的图形发送到深度加强学习组件,以找到解决方案。除了STP之外,Vulcan还可以通过将解决方案(例如,SAT,MVC和X3C)来减少到STP来找到解决方案。我们使用现实世界和合成数据集进行广泛的实验,展示了vulcan的原型,并展示了它的功效和效率。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Learning feature interactions is the key to success for the large-scale CTR prediction and recommendation. In practice, handcrafted feature engineering usually requires exhaustive searching. In order to reduce the high cost of human efforts in feature engineering, researchers propose several deep neural networks (DNN)-based approaches to learn the feature interactions in an end-to-end fashion. However, existing methods either do not learn both vector-wise interactions and bit-wise interactions simultaneously, or fail to combine them in a controllable manner. In this paper, we propose a new model, xDeepInt, based on a novel network architecture called polynomial interaction network (PIN) which learns higher-order vector-wise interactions recursively. By integrating subspace-crossing mechanism, we enable xDeepInt to balance the mixture of vector-wise and bit-wise feature interactions at a bounded order. Based on the network architecture, we customize a combined optimization strategy to conduct feature selection and interaction selection. We implement the proposed model and evaluate the model performance on three real-world datasets. Our experiment results demonstrate the efficacy and effectiveness of xDeepInt over state-of-the-art models. We open-source the TensorFlow implementation of xDeepInt: https://github.com/yanyachen/xDeepInt.
translated by 谷歌翻译
In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new Chinese benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译